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1 Introduction

Dysphonia (impaired voice production) generally refers to a condition where a person produces
voice with an irregularity and it is affecting roughly 30% of the world’s population at some point
in their life [1, 2, 3, 4]. Dysphonia is not to be confused with hoarseness, as hoarseness is mostly
reported by patients when they perceive an alteration in their voice quality, while dysphonia is
recognized by a medical expert as hoarse, breathy, harsh or rough vocal qualities with a lower
degree of phonation functionality.

Dysphonia affects patients of all ages, however research suggests that risks are higher in
paediatric and elderly (>65 years of age) populations. Dysphonia is more common among professors,
pedagogues, older adults and generally people who use their voice significantly more than the
average in their professions [5, 6, 7, 8]. 23.4% of paediatric patients have dysphonia at some point
during their childhood [9, 10, 11, 12]. The data therefore suggests that almost every fourth child
produces a pathological voice. Studies agree that dysphonia is more often reported among boys
than girls, the ratio being 70-30%.

People with various professions are affected by dysphonia but there is a higher likelihood of
developing dysphonia among singers and entertainers, legal professionals, teachers, telemarketers
etc [1, 13, 14, 15, 16, 17, 18]. Patients affected may experience an overall decrease in quality of
life as it can affect a person’s ability to work [19]. These people are in danger to miss work, lose
wages, suffer from social isolation and develop depression. An incomprehensible speech limits a
person’s ability to communicate.

Dysphonia is classified as either an organic or a functional disorder of the larynx. Organic
dysphonia (OD) results from some sort of physiological change in one of the subsystems of
speech, while functional dysphonia (FD) refers to a voice problem in the absence of a physical
condition. According to the American Speech-Language-Hearing Association, organic disorders can
be subdivided into neurogenic and structural [20]. Neurogenic voice disorders include voice problems
caused by abnormal control, coordination, or strength of voice box muscles due to underlying
neurological diseases such as stroke, Parkinson’s disease, multiple sclerosis, myasthenia gravis, and
amyotrophic lateral sclerosis. Structural organic disorders include morphological alterations such as
vocal cord nodules, polyps, gastroesophageal reflux disease (GERD), cyst and vocal cord paralysis
(recurrent paresis, RP) [21].
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2 Research Objectives

I would like to contribute with my research to the speech-based detection of dysphonia and
automatic estimation of its severity in the speech of adults and children by getting a deeper
understanding of the effect of functional and organic dysphonia on speech. My specific goals during
the research are:

a) Examining the possibilities of automatically detecting the severity of dysphonia;

b) Attempting a binary classification to separate dysphonic and healthy speech using different
machine learning approaches;

c) Analysing the possibilities of automatically separating functional and organic dysphonia;

d) Analysing the possibilities of automatically separating healthy and dysphonic voices in
children.

Contribution of my theses can be summarized as follows. I used Hungarian speech samples
in all of my analyses. Hungarian is a language relatively poorly researched. In fact, the topic of
automatic classification of dysphonic and healthy voices using Hungarian speech samples has not
been studied yet, neither in adults, nor in children.

All my analyses are done in case of continuous speech. Sustained vowels might be easier to use
because they do not require a resource intensive and language-dependent segmentation. However,
they lack the information (such as prosody) that could be gathered from a continuous running
(context rich) speech. Continuous speech has several advantages over the analysis of sustained
vowels. For example, it contains variations of fundamental frequency, pauses and phonation onsets,
and provides an opportunity to examine different variations of speech sounds. Treating continuous
speech constitutes a new challenge, as it requires a different approach. However, due to its many
advantages I adopted this paradigm in my research.

Furthermore, I tried to automatically separate functional and organic dysphonia. To my best
knowledge, there has been no research aimed at the automatic separation of functional and organic
dysphonia to this date. Having such a diagnosis supporting system that can separate not only
healthy from dysphonic voices, but also can predict the type of dysphonia, can greatly accelerate
the process in which patients are referred to specialists. If the system detects functional dysphonia,
the patient would be directed to a phoniatrist or speech therapist. However, if the system detects
organic dysphonia, the patient would be directed to an otolaryngologists or oncologist. This could
save a lot of time, leading the patient to care as soon as possible.
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I tried to automatically separate the voices of healthy children from the ones with dysphonia.
The end goal is to create a screening system that can be used by pre-school workers. If a child with
dysphonic voice can be found on time, she or he has a better chance of getting professional help
from an ear, nose and throat (ENT) specialist or a speech therapist.
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3 Methods and materials

3.1 Methodology

During my research, I carried out statistical comparative analysis of acoustic-phonetic feature values
derived from the speech of healthy people, as well as people suffering from organic and functional
dysphonia. Statistical comparative analysis helps in understanding the impact of dysphonia on
speech features, it can also be used as a quick characteristic selection method for machine learning
processes.

I have performed classification and regression tasks, using machine learning methods, in order
to examine the accuracy of automatic classification of samples of healthy subject and dysphonic
voices, along with the severity of dysphonia using features extracted from speech.

3.1.1 RBH scale

The recorded voice examples were classified by a leading phoniatric according to the RBH scale
[22]. The RBH scale gives the severity of dysphonia, where R stands for roughness, B for breathiness
and H for overall hoarseness. The degree of the category H cannot be less than the highest rate of
the other two categories. For example, if B = 3 and R = 2, H is 3, and cannot be 2 or 1. A healthy
voice’s code is R0B0H0; the maximum H and respectively RBH value is 3, so a voice’s code with
severe dysphonia is R3B3H3. Ptok and his colleagues demonstrated that the application of the
RBH scale is suitable for clinical purposes [23]. This scale was used to differentiate the degree
of voice disorders in the database. Speech examples of patients were labelled on the base of this
numeric scale. In this study the overall hoarseness H was used.

3.1.2 Statistical methods

To inspect the relationship of the acoustic features with the severity of dysphonia Pearson product-
moment correlation coefficient was calculated. To interpret the strength of the correlation, I used
the guide Evans suggests for the absolute value of r [24]:

• 0.00-0.19 “very weak”;

• 0.20-0.39 “weak”;

• 0.40-0.59 “moderate”;

• 0.60-0.79 “strong”;

• 0.80-1.0 “very strong”;
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To determine whether the correlation between variables is significant, one must compare the
p-value to a significance level. During correlation analysis α = 0.01 level was used.

Chi-squared test was used to compared classifier performances based on their decision tables
assuming that false negatives and false positives have similar costs. The null hypothesis (H0) for a
chi-square test is that the observed values and the expected values are independent, the alternative
hypothesis (H1) states that they are dependent. I used a significance level of α = 0.05.

Statistical analysis was used in order to check if there is a statistical difference in the distribution
of the severity of hoarseness of the OD and FD groups. Since the RBH severity scores are ordinal
the Mann-Whitney U test is used to compare severity scores in different databases. Mann-Whitney
U test is a non-parametric test and it is often considered the non-parametric alternative to the
independent t-test. In all Mann-Whitney U tests significance level of 95% (α = 0.05) was used. The
null hypothesis (H0) is that the distribution of the dataset is the same across the categories.

The consistency of four specialists’ RBH ratings was also examined with Cronbach’s Alpha
and the Intra Class Correlation Coefficient (ICC). Both methods are widely used to estimate the
reliability of a composite score.

3.1.3 Feature selection

In order to reduce dimensionality of the input vector the Forward Feature Selection (FFS) algorithm
was used. Forward feature selection is an iterative algorithm, choosing the best feature that improves
the performance in regard to a cost or objective function in each step and adding it to the already
selected features. Here, the features were selected using maximum accuracy as an objective function.

3.1.4 Applied machine learning techniques

Binary classifications
For binary classifications an SVM (Support Vector Machine) classifier was used with linear and

radial basis function (rbf) kernel. SVM is a supervised machine learning algorithm which is used
mainly for binary classification tasks [25]. It uses the kernel trick to transform data and based on
these transformations it finds an optimal boundary between the possible outputs.

The second classifier was a Fully-Connected Deep Neural Network, with 4 hidden layers, each
of them with 25 neurons [26]. ReLU (Rectified Linear Unit) activation function was used on the
hidden layers, Softmax on the output layer. Adam optimizer was used and binary crossentropy loss
functions which is common for binary (two-class) classification problems. To avoid overfitting, I
used dropout (with value of 0.25).
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Unsupervised cluster analysis
The k-means is one of the simplest algorithms that uses unsupervised learning method to solve

known clustering issues [27]. This method is a fast and simple approach to the problem: it is easy to
implement, and it is easy to interpret the clustering results. Cluster analysis is used to classify cases
into relative groups called clusters, in this case: individual assessments of severity of dysphonia. In
cluster analysis, there is no prior information about the cluster membership for any of the data. If
the acoustic feature set and the unsupervised learning method are fixed, it is possible to compare
four cluster models for each case labelled by a specialist’s judgement. In order to examine the
subjective nature of RBH, k-means cluster analysis was done.

Regression analysis
Support vector regression (SVR) with linear and rbf kernel was used in order to automatically

determine the severity of dysphonia [28]. Usually SVR with linear kernel less time consuming. SVR
with rbf kernel has good generalization and strong tolerance to input noise.

3.1.5 Evaluation methods

To estimate and compare the performance of the machine learning algorithms Leave-one-out cross
validation (LOOCV) was used, where the result is a large number of performance measures that
can be summarized in an effort to give a more reasonable estimate of the accuracy of your model
on unseen data. A downside of this approach is that it can be a computationally more expensive
than a k-fold cross validation approach.

In order describe the performance of a classification or cluster model the confusion matrices are
given. In my work the metrics accuracy, recall and precision are provided.

To describe the accuracy of regression tasks, two descriptive features are given. The performance
of the regression methods is evaluated by the root mean square error (RMSE) value, the linear
relationship between the target and the predicted H scores is described by Pearson correlation.

3.2 Database

3.2.1 Dysphonic and Healthy Adults Speech Database

The recordings were made using a near field microphone (Monacor ECM-100), Creative Soundblaster
Audigy 2 NX external USB sound card, with good quality A/D converter and low noise level
(audio coding: PCM, sampling rate: 16 kHz, quantization: 16-bit). The recordings were made in a
quiet office environment (medical office). Each patient had to read out aloud one of Aesop’s Fables,
“The North Wind and the Sun”. This folktale is frequently used in phoniatrics as an illustration of
spoken language. It has been translated into several languages, Hungarian included. The text is
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eight sentences long, a recording in average is 50 seconds long. The database was annotated and
segmented on phone level with the help of an automatic phone segmentator which was developed in
the Laboratory of Speech Acoustics [29], and was followed by manual corrections. The segmentation
was done using the SAMPA phonetic alphabet [30]. In the rest of this booklet, vowels and other
phones will be referred with SAMPA characters in brackets.

The collected speech database contains voices from people suffering from diseases like tumors at
various places of the vocal tract, gastroesophageal reflux disease, chronic inflammation of larynx,
bulbar paresis, amyotrophic lateral sclerosis, leukoplakia, spasmodic dysphonia, etc. The most
frequent diseases are functional dysphonia (referred to as ’FD’) and recurrent paresis (referred to as
’RP’). We refer to the recordings from patients with dysphonia as ‘Dys’. Recordings from healthy
control were collected as well. These recordings are used as comparison, and they were collected
from people who had attended for unrelated check-ups. We refer to these recordings as ‘HC’.

The distribution of the voice recordings in the database is showed in Table 1. The database
contains a total of 450 recordings, 257 from patients with dysphonia (156 females and 101 males)
and 193 people with a healthy voice (108 females and 85 males).

In the course of my research the database was constantly expanding with new recordings, this
is why I drew my conclusions from a smaller database in some of my thesis statements. At each
thesis point I present the database I used.

Table 1: Dysphonic and Healthy Adults Speech Database.

Diagnosis
Sex Dysphonia Healthy Total

Female 156 108 264
Male 101 85 186
Total 257 193 450

3.2.2 Dysphonic and Healthy Child Speech Database

Voice samples from children were collected at several kindergartens. All the recordings were made
with parental consent, mostly in the presence of the children’s parents. The children recited a
poem entitled “The Squirrel”, written by a Erika Bartos. This poem was chosen for therapeutic
reasons, speech therapists using the poem during treatment, and because children in the 5-10 year
old age group are very fond of the poem and it is easy for them to learn. A recording in average
is 20 seconds long. The most frequent vowel in the poem is the vowel [o], with 16 pieces followed
by 14 pieces of the vowel [O] and 9 pieces of vowel [E]. The recordings were made using a near
field microphone (Monacor ECM-100), Creative Soundblaster Audigy 2 NX external USB sound
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card, with 44.100 Hz sampling rate and 16-bit linear quantization. The duration of the recordings
is about 20 seconds each.

The segmentation was made with the help of an automatic phone segmentator (mentioned in
Section 3.2.1), followed by manual corrections. A total of 59 recordings were used in this work: 25
voices from children with dysphonia (mean age: 6.52(±1.94)) (3 children had vocal nodes, the rest
had functional dysphonia) and 34 recordings from healthy children (mean age: 5.35(±0.54)). Table
2 summarizes the recordings from the database used in the experiments.

Table 2: Dysphonic and Healthy Child Speech Database.

Diagnosis
Sex Dysphonia Healthy Total

Female 5 15 20
Male 20 19 39
Total 25 34 59

3.3 Input vector

3.3.1 Input vector from acoustic features

In the case where I examined adult’s voice, I created the input vector for the classifiers used from
acoustic features measured on vowel [E] (being the most frequent vowel in the read text), on
different phonetic classes and on the whole wave file.

On vowel [E] jitter(ddp), shimmer(ddp), HNR (Harmonics-to-Noise Ratio) and the first
component (c1) of the mel-frequency cepstral coefficients (referred to as ‘mfcc01’) were measured.
The abbreviation ’ddp’ refers to Difference of Differences of Periods. On different phonetic
classes Soft Phonation Index (SPI) and Empirical mode decomposition (EMD) based IMF entropy
frequency band ratios were measured on the voiced parts of speech, and the measured features
were grouped into different phonetic classes: the vowel [E], nasal phones marked with [m], [n] and
[J], on high vowels marked with [E], [e:], [i], [2] and [y], on low vowels marked with [O], [A:], [o]
and [u], voiced spirants marked with [v], [z] and [Z], voiced plosives and affricates marked with [b],
[d], [g], [dz], [dZ] and [d’]. SPI was calculated on the whole sample as well.

Derived acoustic features were calculated as the means, standard deviations and ranges of
acoustic features. In this way, a total of 49 acoustic features were measured per each patient’s voice
sample, so 49 dimensional input vector was prepared from acoustic features. Detailed description of
the acoustic features can be found in [J4]. This feature set is further referred to as ’the 49 feature
set’.
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When dealing with children’s speech acoustic features were measured on vowel [o] (being the
most frequent vowel in the poem), on different phonetic classes and on the whole wave file.

On vowel [o] the following acoustic features were measured: jitter(ddp), shimmer(ddp), HNR
(Harmonics-to-Noise Ratio), 12 mfccs, the fundamental frequency (F0), formant frequency (F1,
F2, F3), Formant frequency bandwidth (F1BW, F2BW, F3BW). The fundamental frequency
calculation was done by an autocorrelation method described in [31]. Formant frequency tracking
was realized by applying Gaussian window for a 150 ms long signal at a 10 ms rate. For each frame
LPC coefficients were measured.

On different phonetic classes SPI and IMF entropy frequency band ratios were measured on
the voiced parts of speech, and the measured features were grouped into different phonetic classes:
on vowel [o], on nasal phones, on high vowels, on low vowels, on voiced spirants, on voiced plosives
and affricates. SPI was calculated on the whole sample as well. Derived acoustic features
were calculated as the means, standard deviations and ranges of acoustic features. A total of 103
acoustic features were calculated per each children’s voice sample.

3.3.2 Input vector from phone level posterior probability values of an ASR

The acoustic models of Automatic Speech Recognizers (ASR) can also be used to extract features
for dysphonia detection and classification. Today‘s state-of-the-art hybrid ASR acoustic models
are composed of a transition model (a Hidden Markov Model) and a phone classifier (DNN) [32].
The phone classifier can also be used to classify frames in standalone mode (without adding the
recognition network and the ASR decoder) by using a forward pass for the speech frames one-by-one.
In this way we obtain posterior probabilities of phones every 10 ms time frame from the DNN
softmax layer of the phone classifier. Hence, only the phone classifier component of the acoustic
model is used for prediction.

The acoustic model used for my experiments was trained on Hungarian data mixed from BABEL
[33], the Hungarian Reference Speech Database (MRBA) [34] and the Hungarian Broadcast News
Database [35] with the Kaldi toolkit [36], following the ‘nnet2‘ WSJ recipe. Its phone classifier is
based on spliced and LDA+MLLT transformed MFCC features input into a feed-forward DNN
with 4, 1024 dimensional hidden layers with p-norm nonlinearity (p=2) and a softmax output for
up to 2500 senones (context sensitive logical phone entities). After the forward pass in inference
time, the senones are collapsed to phones of the 39 element SAMPA Hungarian phone set [33].

When the phoneme in question takes the highest probability value of all the other phonemes
in the frame (i.e., the phoneme ‘wins its frame’), I stored the values in a list, then I calculated
the mean, standard deviation and the range. I did the calculations for vowels [E], for nasals, high
vowels, low vowels, voiced spirants and plosives and affricates, for each recording. This resulted in
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a 21 dimensional vector per recording. I refer to this input vector as “ASR posterior features” to
maintain coherence of terms with international literature, although as we have seen, these features
are not ASR features in the strict sense, as they are generated by the phone classifier of a small
acoustic model.
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4 Results

4.1 The examination of the automatic assessment of the severity of dysphonia

4.1.1 Phonetic-class based correlation analysis for the severity of dysphonia

In the diagnosis and management of dysphonic speech, a voice clinician typically assesses the
quality of a patient’s voice personally. The assessment is subjective by nature. The target severity
of a voice is usually defined as one clinician’s assessment or as the median or average severity
rating determined by a group of experienced raters assessing the voice [37, 38]. If multiple raters
are recruited for the subjective assessment of severity of dysphonia, the assessment is done by
listening to the previously recorded voice samples. The assessment can vary among raters; thus,
analysis of rating consistency is advisable. In the work of Law and his colleagues [39], it was found
that higher intra-rater reliability was achieved with continuous speech than with sustained vowel
samples. In most voice clinics, acoustic measures are derived from sustained vowel samples; however,
continuous speech has several advantages over analysis of sustained vowels. It contains a variation
of fundamental frequency, pauses and phonation onsets, and there is the opportunity to examine
different combinations of speech sounds.

An important task is to identify relevant acoustic features to predict the severity of the dysphonic
voices automatically. The following theses address this issue.

Using a small speech database, it is very important to optimize the speech features as much as
possible, rather than to use a lot of acoustic features, with the risk of bringing unwanted noise
into the system. My hypotheses are the followings: speech defect severity determined by a clinician
(RBH) is correlated (coincides) with the distortion degree of the characteristic acoustic features.

In my first thesis I performed correlation analysis between acoustic features (presented in
subsection 3.3.1) and the severity of hoarseness given by a specialist. The specialist treated the
patient and determined the diagnosis. The specialist directly listened to and evaluated the quality
of the patient’s speech during the consultations. The Pearson correlation coefficient was calculated
in every case where correlation was significant at the 0.01 level (2-tailed) between the acoustic
feature and the subjective rating.

The analysis was carried out on a subset of the database presented in subsection 3.2.1. The
distribution of the voice recordings by H used in this experiment is shown in Table 3. Note that
the recordings with the value H equal to 0 are all recordings from healthy patients. Thus, a total of
136 records from healthy people and 206 records from patients suffering from dysphonia were used.

The results presented on Figure 1 indicate that features such as jitter(ddp), shimmer(dda),
Harmonics-to-Noise Ratio (HNR) and “mfcc01” correlate with the severity of dysphonia. In the
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Table 3: Distribution of healthy and dysphonic speakers in the database, depending on the value of H.

Count Value of H Total0 1 2 3
Male 67 34 20 32 153
Female 69 72 27 21 189
Total 136 106 47 53 342

Figure 1: Pearson correlation with commonly used acoustic features.
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Figure 2: Pearson correlation with SPI measured on phonetic classes.

Figure 3: Pearson correlation with IMF entropy-based frequency band ratios measured on phonetic classes.
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figures, the absolute values of the Pearson correlations are shown where correlation is signifi-
cant at the 0.01 level (2-tailed). The greater the absolute value of the correlation coefficient, the
stronger the relationship between the acoustic features and the severity of hoarseness. Accord-
ing to Evans suggestions, the correlation of jitter.std.[E] and mfcc01.std.[E] with the severity
of hoarseness is “very weak”, the correlation of shimmer.std.[E] is “weak”, the correlation of
jitter.mean.[E], shimmer.mean.[E], HNR.mean.[E] and HNR.std.[E] is “moderate”, while the corre-
lation of mfcc01.mean.[E] with the severity of hoarseness can be considered “strong”.

When SPI was measured on phonetic classes, the Pearson correlation coefficients ranged from
0.11 and 0.23, indicates “very weak” and “weak”, but significant correlation. The results are shown
in Figure 2.

EMD-based IMF entropy frequency band ratios correlate with the severity of dysphonia, as
Figure 3 suggests. IMF.std.[E], IMF.std.[Nasal], IMF.std.[VoicedSpirants], IMF.std.[VoicedPlosives]
show “weak” correlation, while IMF.mean.[E], IMF.mean.[Nasal], IMF.mean.[HighVowels],
IMF.std.[HighVowels], IMF.mean.[LowVowels], IMF.std.[LowVowels], IMF.mean.[VoicedSpirants]
and IMF.mean.[VoicedPlosives] show “moderate” correlation with the severity of dysphonia.

Thesis I. A. [C4] I showed that jitter(ddp), shimmer(dda), Harmonics-to-Noise Ratio (HNR),
mfcc01, Soft Phonation Index (SPI) and Empirical mode decomposition (EMD) based IMF entropy
frequency band ratios measured at specific phones show significant correlation at the 0.01 level with
the severity of dysphonia when measured on the Hungarian Dysphonic and Healthy Adult Speech
Database.

4.1.2 Unsupervised and supervised learning methods for the modeling of the four
grade assessments of the specialists

It is also an important question whether the acoustic features selected by the correlation analysis
are suitable for modelling the four grade assessments of the specialists (RBH subjective scale).
In this investigation two datasets were used, the Initial Dysphonic and Healthy Database and
the Selected Dysphonic and Healthy Database. An unsupervised learning method, the k-means
algorithm was used on the Selected Dysphonic and Healthy Database. K-means clustering is a
type of unsupervised learning where we have unlabelled data. The goal of the algorithm is to find
groups in the data called clusters, with the number of groups represented by the variable k. Before
I performed the unsupervised learning method a two-class classification was performed to find
out whether the chosen acoustic features are rich enough in information to differentiate between
healthy and dysphonic voices, even after reducing the dimensionality of the input vector.
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The Initial Dysphonic and Healthy Database contains a total of 263 speech recordings, 127
recordings from healthy subjects (62 male and 65 female) and 136 recordings from patients suffering
from functional or organic dysphonia (66 male and 70 female), thus each recording is from a
separate subject. The specialist who treated the patient determined the diagnosis. The specialist
evaluated the quality of the patient’s speech during consultation time. This database was used for
the two-class classification experiment.

Four specialists were asked to evaluate the voice recordings of the Selected Dysphonic and
Healthy Database with respect to the severity of the dysphonia. The Selected Dysphonic and
Healthy Database contains a total of 148 recordings, and it was used for the unsupervised cluster
and regression analysis. One of the four specialists set up the diagnosis and evaluated the quality of
the patient’s speech during the consultations; the other three specialists did not know the patient
and only listened to the previously recorded voice files and determined the severity of dysphonia.
Every rater is experienced in working with patients with voice disorders and dysphonia.

A two-class classification was performed on the Initial Dysphonic and Healthy Database using
leave-one-out cross validation, with SVM classifier. Classification experiments were made using
several combinations. Liner and rbf kernels were also tried out. The default value of C of support
vector machine is 1, while γ is 1/number of features. In order to choose the optimal hyperparameters
for the SVM classifier grid search was used. Leave-one-out cross validation was used in all cases.

The highest accuracy of 89% was reached by using an rbf kernel. The FFS feature selection
algorithm reduced the input dimensionality to 18 acoustic features. The acoustic features se-
lected by the FFS algorithm are the following: jitter.mean.[E], shimmer.mean.[E], HNR.mean.[E],
mfcc01.mean.[E], jitter.std.[E], shimmer.std.[E], HNR.std.[E], mfcc01.std.[E], SPI.std.[E],
SPI.mean.[Nasal], SPI.std.[Nasal], SPI.std.[LowVowels], SPI.mean.[VoicedSpirants],
SPI.std.[VoicedSpirants], IMF.std.[E], IMF.mean.[Nasal], IMF.mean.[VoicedPlosives],
IMF.std.[VoicedPlosives].

It is an interesting question whether the chosen acoustic features can model the individual
assessments. Cluster analysis tries to identify structures, homogeneous groups of cases not previously
known within the data. In my case, the hidden structure is the “true label” of severity score for
each recording given by an ideal examiner. The cluster analyses is used to mimic this ideal examiner
in order to get the true label for each recording. Of course, we rely more on a specialist’s rating
than on a clustering process, but if the found clusters are really close to a specialist’s rating we can
consider calling that assessment as true. Hence, I need to compare four cluster models labelled by
a specialist’s judgement. If the acoustic feature set and the unsupervised learning method are fixed,
it is possible to compare four cluster models, for each case, labelled by a specialist’s judgement. To
examine the subjective nature of RBH, k-means cluster analysis was performed.
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k-means clustering has the objective of putting the observations into k clusters, where k is the
number of clusters determined by the user as an input. I set the number of clusters to four. The
cluster analysis classified the observations into clusters A, B, C, and D.

The clusters where assigned to the severity value by the minimum mean of absolute errors
(minimum of MAE): A to H = 0, B to H = 1, C to H = 2, and D to H = 3. The confusion matrices
for each specialist are shown separately in Table 4, 5, 6 and 7. The accuracies for the decision in
case of each specialist in order is: 49%, 44%, 45%, 47%, the mean accuracy is 46.25% with 2.22%
standard deviation. In the case of a balanced distribution of 4 classes, the baseline classification
would be 25%. From this experiment I can conclude that the acoustic feature set is suitable for
modelling the individual assessments of dysphonia severity.

Table 4: Confusion matrix based on the assessment of Specialist 1.

Specialist 1
(True Label of H)
0 1 2 3 Class precision

Predicted label

0 12 1 2 1 75%
1 13 33 5 3 61%
2 9 25 10 5 20%
3 2 4 6 17 59%

Class recall 33% 52% 43% 65%

Table 5: Confusion matrix based on the assessment of Specialist 2.

Specialist 2
(True Label of H)
0 1 2 3 Class precision

Predicted label

0 11 3 2 0 69%
1 5 26 23 0 48%
2 6 24 16 3 33%
3 0 2 15 12 41%

Class recall 50% 47% 29% 80%
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Table 6: Confusion matrix based on the assessment of Specialist 3.

Specialist 3
(True Label of H)
0 1 2 3 Class precision

Predicted label

0 11 2 2 1 69%
1 2 20 25 7 37%
2 3 15 16 15 33%
3 0 1 9 19 66%

Class recall 69% 53% 31% 45%

Table 7: Confusion matrix based on the assessment of Specialist 4.

Specialist 4
(True Label of H)
0 1 2 3 Class precision

Predicted label

0 12 2 2 0 75%
1 7 24 18 5 44%
2 6 18 17 8 35%
3 0 6 6 17 59%

Class recall 48% 48% 40% 57%

I calculated the Pearson correlation between the cluster defined severity scores and the individual
specialists’ ratings and I also evaluated this using the mean RBH perceptual evaluation of the four
specialists. Values are shown in Table 8. All correlations show “moderate” relations. The mean
correlation is 0.52 with 0.01 standard deviation. The highest value was measured between the
cluster defined severity scores and the mean of the ratings, giving a value of 0.59. Since the found
clusters correlate the best with the mean of the four specialists, this is the true label I use for the
regression analyses.

Table 8: Pearson correlation between the cluster defined severity scores and the specialists’ ratings.

Specialist 1 Specialist 2 Specialist 3 Specialist 4 The mean of
the ratings

Pearson
correlation 0.51 0.54 0.53 0.51 0.59

Thesis I. B. [C4, J4] I showed that when clustering the data, with the selected acoustic features
using k-means clustering, the found clusters correlate well with the severity of dysphonia. A 0.59
Pearson correlation was achieved between the cluster defined values and the mean of the four
specialists’ ratings.
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4.1.3 The automatic assessment of the severity of dysphonia with regression analysis

This analysis was performed on the Selected Dysphonic and Healthy Database. As a result of
subsection 4.1.2 the mean RBH perceptual evaluation of specialists was used as the target for my
regression models.

It is important to analyse whether the rater reliability of the 4 experts is consistent enough.
The value of the internal consistency of the specialists gives us an idea of what is the maximum
correlation value we can expect from our regression model. We do not expect the regression model to
achieve better results than a well trained specialist. For measuring internal consistency (“reliability”)
of the raters’ evaluations Cronbach’s Alpha and the Intra Class Correlation Coefficient (ICC)
methods were used. Despite the interesting differences among the decision of the specialists, a high
degree of reliability (Cronbach’s Alpha = 0.89, ICC = 0.89) was measured between their severity
judgements when measuring internal consistency.

Regression has a significant advantage compared to cluster analysis, since it’s prediction is not
an ordinal, but a continuous variable. This property can significantly improve the quality of the
model. Due to the small sample size, leave-one-out cross validation was used. The performance of
the regression methods is evaluated by the RMSE value, the linear relationship between the target
and the predicted H scores is described by Pearson correlation. To find the optimal hyperparameters
grid search was used.

In this analysis, support vector regression with linear and radial basis function kernel were used.
To reach the best performance the 18-feature set (described in 4.1.2) and the result of the FFS
algorithm was used, for SVR with linear and rbf kernel separately. As previously mentioned the
mean of the four specialists’ ratings was used as target. Table 9 summarizes the results.

Table 9: Regression analysis results – the mean of the four specialist’s ratings as target.

Acoustic
feature set

Type of
regression Correlation RMSE of H hyperparameters

18 feature set linear kernel 0.83 0.50 C = 1
Result of FFS,
8 feature set linear kernel 0.85 0.46 C = 1

18 feature set rbf kernel 0.81 0.51 C = 2, γ = 0.125
Result of FFS,
14 feature set rbf kernel 0.85 0.45 C = 4, γ = 0.25

The FFS algorithm reduced the original 33-dimension input to only eight features using linear ker-
nel. The following features were selected mfcc01.mean.[E], shimmer.mean.[E], SPI.std.[LowVowels],
HNR.std.[E], SPI.mean.[HighVowels], IMF.mean.[Nasal], SPI.std.[VoicedPlosives],
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Figure 4: Automatically predicted dysphonia severity degree according to perceptual assessment of H,
using SVR with linear kernel regression with 8 parameters.

IMF.std.[LowVowels]. This configuration gave the highest 0.85 correlation.
When rbf kernel was used, the FSS algorithm selected 14 features, these were the follow-

ing: shimmer.mean.[E], HNR.mean.[E], mfcc01.mean.[E], HNR.std.[E], SPI.mean.[E], SPI.std.[E],
SPI.std.[Nasal], SPI.mean.[HighVowels], SPI.mean.[LowVowels], SPI.std.[LowVowels],
SPI.mean.[VoicedPlosives], IMF.mean.[Nasal], IMF.mean.[VoicedPlosives], IMF.std.[VoicedPlosives].
The lowest RMSE value of 0.454 was obtained here. Furthermore, the FFS models gave only slightly
better results than the models with the 18-feature set.

This illustrates the capacity of the proposed approach in predicting the severity of dysphonia
regardless of the speaker’s pathology or severity degree. Since the ICC value between the 4 specialists
resulted in 0.89 it can be considered as a theoretical goal we want to achieve. In light of this, the
correlation value of 0.85 obtained by the regression model is considered almost perfect.

Figure 4 depicts the automatically predicted severity of the dysphonia compared to the reference
perceptual assessment of speaker severity. The figure shows the SVR linear kernel regression model
created by the result of the FFS algorithm. The figure illustrates once again the capacity of the
proposed approach in predicting the severity of dysphonia regardless of the speaker’s pathology or
severity degree. It can be observed that the model gives good prediction of severity of H1.

Thesis I. C. [C4, J4] I showed that an automatic estimation of the severity of dysphonia is
possible using only eight acoustic features as input vector with a SVR with linear kernel reaching
0.85 Pearson correlation and 0.46 RMSE on the Selected Dysphonic and Healthy Database.
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4.2 The automatic classification of dysphonic and healthy speech

4.2.1 The comparison of SVM and DNN classifiers in case of acoustic features as an
input vector

In order to do a binary classification of dysphonic and healthy speech, researchers generally use
a wide variety of acoustic features, derived from speech and used as input vectors with machine
learning algorithms [40, 41].

For classification tasks, a common machine learning algorithm is based on SVMs [42, 43], as
they are good at dealing with small data samples, but Deep Learning technics are also exploited
[44, 45, 46, 47, 48, 49]. Deep neural networks (DNNs) are used on a variety of tasks, usually on big
datasets.

In this experiment I used two classification approaches. The first classifier used was SVM, the
second classifier was a Fully-Connected Deep Neural Network as described in Section 3.1.4. FFS
algorithm was used in order to reduce dimensionality of the input vector in the case when SVM
was used as a classifier. More on the FFS algorithm in Section 3.1.3. In order to choose the optimal
hyperparameters for the SVM classifier grid search was used.

The database used in this experiment is the same database described in Section 3.2.1 and in
Table 1. The database contains a total of 450 recordings, 257 from patients with dysphonia (156
females and 101 males) and 193 people with a healthy voice (108 females and 85 males).

I created the input vector from acoustic features described in Section 3.3.1, thus 49 acoustic
features were used as input vector.

The results of the binary classification with LOOVC between healthy and dysphonic voices
using acoustic features as input vector are shown in Table 10.

Table 10: Two-class classification results between HC and Dys in case of leave-one-out cross validation.

Input
vector FFS

Number
of

features

Classifier
and configuration

Hyper-
parameters

LOOCV
accuracy

Acoustic
features Yes 11 SVM linear kernel C = 1 85%

Acoustic
features Yes 9 SVM rbf kernel C = 256;

γ = 0.0625 85%

Acoustic
features No 49 SVM linear kernel C = 4 83%

Acoustic
features No 49 SVM rbf kernel C = 1024;

γ = 0.00098 84%

Acoustic
features No 49 DNN dropout 0.25 88%
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The first column of the table shows the type of the input vector, the next whether FFS was
performed on the input vector or not, then the classifier and the configuration used, followed by
the accuracy. In case of SVM, grid search was used in every case. In case of DNN dropout value of
0.25 was used.

Using DNN as a classifier yields higher accuracy than the SVM approach with 3.53% relative
accuracy increase, resulting in the highest accuracy of 88%. Also, there is no considerable difference
in accuracy between linear and rbf kernel in case of SVM (85% and 85%).

The confusion matrix using FFS and SVM with linear kernel is shown in Table 11, while the
confusion matrix of the DNN scenario in Table 12. When using SVM the class precision of the HC
class is 84.83%, while the precision of the Dys class is 84.56%. The recall for class HC is 78.24%
and 89.49% for class Dys.

Table 11: Confusion matrix using FFS and SVM with linear kernel.

true HC true Dys class precision
pred. HC 151 27 84.83%
pred. Dys 42 230 84.56%
class recall 78.24% 89.49%

Table 12: Confusion matrix using a Fully-Connected Deep Neural Network.

true HC true Dys class precision
pred. HC 189 48 79.75%
pred. Dys 4 209 98.12%
class recall 97.93% 81.32%

The confusion matrix of the 88% accuracy setting is shown in Table 12. As the table suggests,
the class precision of the HC class is 79.75%, while the precision of the Dys class is 98.12%. This
means that the number of cases where the two classes were predicted correctly is not balanced.
The recall for class HC is 97.93% and 81.32% for class Dys.

Accuracy is not the only absolute measure by which we characterize our classifier. It obscures
a lot of important information, so it should be handled with care. We like confusion matrices if
they are symmetric, if the mismatch weights of the classes are even. In medical applications, in
general, the confusion matrix is not a symmetric matrix. Classifying a sick person as healthy is a
more serious mistake than classifying a healthy person as sick. This means that the recall (also
known as sensitivity) of class Dys is also a very important aspect of the classifier. The lower the
risk that a person with dysphonia is miss-classified as healthy the better. We rather have some
healthy people labelled dysphonic over predicting a dysphonic person healthy. In this sense using
FFS and SVM with linear kernel seems to be a better approach since the recall of Dys is 89.49%,
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while when using DNN the recall of Dys is 81.32%.
If false negatives and false positives have similar costs two decision tables can be constructed

by the number of good predictions and the number of miss-predictions and chi-square test be
performed. The p-value of the test was 0.09, so there is no statistical difference found between the
system with 85% accuracy (provided by the SVM with linear and rbf kernel) and the 88% accuracy
Fully-Connected Deep Neural Network.

Thesis II. A. [C2, C9] I showed that the binary classification of dysphonic and healthy voices
is possible for Hungarian. When applying a Fully-Connected Deep Neural Network, an accuracy of
88% can be achieved with LOOCV, using acoustic features as input on the Hungarian Dysphonic
and Healthy Adult Speech Database.

4.2.2 Using ASR posterior probability features as input vectors for the DNN classi-
fier

Automatic speech recognition (ASR) is traditionally decomposed into creating an acoustic and a
language model with a vocabulary [50]. The acoustic model is most often a hybrid of a Hidden
Markov Model (HMM) to facilitate dynamic warping for alignment, and a set of phone or phone
alike (obtained through a decision tree to group acoustically similar entities) models responsible for
providing similarity measures between the actual frame(s) to be classified and the phone (senone)
set. Although this set of models rarely corresponds to pure phone models, for simplicity I will refer
to this as a ‘phone model’, especially as the output of the phone model can be collapsed to phone
posteriors. It is obvious that these phone posteriors can be used individually to classify frames,
or better, to derive a Goodness of Pronunciation (GOP) score [51] which can be used in speech
assessment to automatically evaluate pronunciation.

Using the GOP or pure phone posteriors as additional or standalone features to detect or classify
voice disorders – although not particularly dysphonia – has been addressed by many researchers.
For example, in [52] and [53] researchers use ASR posteriors to predict severity of ‘general’ voice
disorders, that is the type and characteristics of the disorders are not classified, but their severity
is known. The frame level posteriors produced by a DNN phone model are a good measure of the
acoustic mismatch caused by voice quality change and thus can be exploited for classification and
assessment of voice disorders.

I argue that this method should be treated with caution in dysphonia. It is questionable whether
an acoustic model trained for normal speech recognition can be used to distinguish dysphonic
speech at all. The training of an Automatic Speech Recognition system require large amount of
training data recorded from speakers with different genders, voice characteristics, regional accents,
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education backgrounds, etc. The training data may include different accents and dialects, voices
from smokers, from the young and from the elderly. Dysphonic speech, even by accident, can be
included in larger numbers in the database. The general goal of speech recognition is to recognize
hoarse, nasal, sad, cheerful, old and young speech equally. I wanted to verify this hypothesis if
using or adding phone posteriors might produce a better classification system for dysphonia than
using acoustic features as input vector. To the best of my knowledge, this issue has never been
evaluated for dysphonic speech.

I created the input vector from posterior probabilities of phones as described in Section 3.3.2,
thus 21 phone posterior features were used as input, then the input vector was fed into a dysphonia
classifier (DNN) and compared to the result presented in section 4.2.1. Results show that using
acoustic features as the input vector of the classifier outperforms the ASR posterior features using
DNN as a classifier. An accuracy of 88% were reached when acoustic features was used as input
and 60% when ASR posterior features were used as input vector.

Table 13: Two-class classification results between HC and Dys using DNN and comparing input vectors.

Input
vector FFS

Number
of

features

Classifier
and configuration

Hyper-
parameters

LOOCV
accuracy

Acoustic
features No 49 DNN dropout 0.25 88%

ASR posterior
features No 21 DNN dropout 0.25 60%

Joint
features No 70 DNN dropout 0.25 89%

Table 14: Confusion matrix using a Fully-Connected Deep Neural Network with the joint features vector.

true HC true Dys class precision
pred. HC 167 25 86.98%
pred. Dys 26 232 89.92%
class recall 86.53% 90.27%

Since the ASR posterior features fall short behind the results obtained by the acoustic features, I
examined whether the combination of the two input vectors (called “joint feature vector”) increases
the result of the classification accuracy. When the joint feature vector was used at the input of
the neural network, the classification accuracy increased to 89%. Results of the classifications are
shown in Table 13. While this is better than just using acoustic features, there is no significant
impact of using ASR posterior probability values.
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The confusion matrix of the DNN with the joint vector feature input can be seen in Table 14.
The class precision of the HC class is 86.98%, while the precision of the Dys class is 89.92%. The
recall for class HC is 86.53% and 90.27% for class Dys.

Although the class recall of Dys when using the joint feature vector is higher than using only
acoustic features (90.27% in the first case and 81.32% in the second), comparing the joint feature
vector’s result with the case when acoustic features where used with FFS and SVM with linear
kernel (presented in Table 11) the increase in the recall of Dys is not significant.

If false negatives and false positives have similar costs and chi-square test are performed there
is no significant difference between the classifications with accuracy of 85%, 88% and 89%. The
p-value between the acoustic features with SVM and the joint feature vector with DNN is 0.07,
while between acoustic features with DNN and the joint feature vector with DNN is 0.91. Based on
these, it can be concluded that it is not worthwhile to calculate ASR phone posterior, as it has no
significant impact, but it can greatly complicate and slow down the current proposed system.

To verify why the ASR posterior probability features failed to improve the classification accuracy
the distributions of a specific phone posteriors for the four severity categories (H) were calculated.
In my first approach I calculated the highest posterior (where the phoneme ‘wins its frame’) of the
frames across the four severity categories, in the second approach I calculated all the posteriors
where the specific phone appeared. The results are shown in Figure 5 and 6 for phone [E]. It is
seen that different severity categories do not separate well by the phone posteriors. Other phones
have similar trend.

I argue that the different objective criteria and uncontrolled data with respect to dysphonia that
are used when training ASR phone models justify why phone posteriors could not help improving
my results. The way to move forward in this research is to get more data and search for further
acoustic features.

From these results the following theses can be formulated.

Thesis II. B. [C2, C9] I have shown, that using ASR phone posterior derived features, that
were trained for general ASR purpose, is less effective in the automatic classification of healthy and
dysphonic voices, than using the acoustic feature set directly. Deeper analyses showed weak relation
between phone posterior distributions and dysphonia severity scores.

Thesis II. C. [C2, C9] I have shown that adding ASR phone posterior derived features to the
acoustic features does not significantly improve the automatic classification accuracy of healthy and
dysphonic voices.
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Figure 5: Phone posterior distributions of highest probability [E] phones.

Figure 6: Phone posterior distributions of all [E] phones.
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4.3 The automatic classification of functional and organic dysphonia

As mentioned in the Introduction (Section 1) dysphonia can be classified as either an organic or a
functional disorder of the larynx.

According to Barth [54] and Stern [55] we are talking about a functional phonation disorder, if
the diagnostic tools available to us do not detect organic lesions. The voice organs are healthy, yet
the interplay of the temporal and dynamic systems of the factors necessary for voice production is
disturbed. Weiss states that the “functional” indicator is temporary and valid only until the means
of science are able to reveal the real organ causes of the illness [56]. Gundermann argues against
this view and states it is not appropriate to use the term “functional” instead of “lack of organic”
[57]. Organ abnormality can be the starting point of a functional disorder and vice versa and it
can lead to organic alteration. From the literature presented above, the two categories do not seem
to be always mutually exclusive.

It is an interesting question whether it is possible to automatically separate functional from
organic dysphonia. If functional dysphonia can be determined with high probability, with the help
of a diagnosis support system, the patient would be directed to a phoniatrician or speech therapist.
If the system detects organic dysphonia the patient would be directed to an otolaryngologists or
oncologist. This would save a lot of time and would lead the patient to care as soon as possible.

There are disputes in the definition and separation of FD and OD, and that the two categories
may not be always mutually exclusive. It is natural that the two groups could better classified on a
database where the distributions of the severity of hoarseness for the two groups are statistically
different, for example if the OD group has a statistically significantly higher degree of severity than
the FD group. In this way, the classifier may divide the severity of hoarseness (and not the disease
types) into two groups: low and high. What we really want to achieve instead is to classify the
two disease types in two. To investigate this phenomenon, the Filtered Dysphonic Database was
created such way that the distribution of the severity of hoarseness was not significantly different
in the OD and FD groups.

In this Section I make an attempt to automatically separate functional from organic dysphonia
with the help of SVM algorithm and try to identify acoustic features that are best for classification
purposes.

The database used in this experiment is the filtered version of the database described in Section
3.2.1. The Filtered Dysphonic Database was created is such a way that the distribution of sexes and
hoarseness levels in the OD and FD groups are equal. The Filtered Dysphonic Database contains
a total number of 164 recordings, 82 from patients suffering from organic and 82 suffering from
functional dysphonia. The database contains 122 females (61 with OD and 61 with FD) and 42

27



males (21 with OD and 21 with FD) recordings. The mean hoarseness score (H parameter from the
RBH subjective scale) given for the OD group was 1.5 with 0.7 standard deviation, while for the
FD group the mean was 1.4 with 0.7 standard deviation. The description of the Filtered Dysphonic
Database is shown in Table 15.

Table 15: The Filtered Dysphonic Database

Number of
female

recordings

Number of
male

recordings
H severity Female

H severity
Male

H severity

OD 61 21 1.5 (±0.7) 1.5 (±0.6) 1.5 (±0.8)
FD 61 21 1.4 (±0.7) 1.3 (±0.7) 1.5 (±0.8)

The same 49 acoustic features were used for the classifier input vector as described in Section
3.3.1.

The Filtered Dysphonic Database is constructed with the purpose that it should not have
significant difference in the distribution of the severity in the OD and FD dataset. Since the severity
scores are ordinal the Mann-Whitney U test is used check the statistical difference. Section 3.1.2
describes the Mann-Whitney U test in more detail. Significance level of 95% (α = 0.05) was used.

When performing the Mann-Whitney U test, the calculated p-value equals to 0.65 for the total
sample, 0.34 in case of females, 0.65 in case of males (p-value > α). The distribution of hoarseness
of the OD group is considered to be the same to the distribution of hoarseness of the FD group. In
other words, the difference between the distributions of hoarseness of the OD and FD populations
is not big enough to be statistically significant. Thus, the Filtered Dysphonic Database is suitable
for further classification investigation as it excludes the possibility that the classifier is classifying
the degree of hoarseness.

In the experiment SVM with FFS was used with LOOCV data split technique. More on the
SVM classifier and FFS algorithm in Section 3.1.4 and 3.1.3. For input the 49 feature set was used
described in Section 3.3.1.

Table 16 shows the classification results when the Filtered Dysphonic Database was used. The
highest accuracy was 71% using SVM with linear kernel. The FFS algorithm selected 5 acoustic
features: the std of SPI on nasals, the std and range of IMF entropy measured on high vowels and
the mean and std of IMF entropy on spirants. The scenarios where FFS was used outperformed
the scenarios where the original 49 acoustic feature set was used in case of SVM with linear kernel,
but not with rbf kernel.

The confusion matrix of the 71% classification result can be seen in Table 17. The class
precision of the OD class is 72% and 69% in case of FD. The recall for class FD was 74% and 67%
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Table 16: Two-class classification results between OD and FD on the Filtered Dysphonic Database.

FFS
Number

of
features

Classifier
and configuration

Hyper-
parameters

LOOCV
accuracy

No 49 SVM linear kernel C = 0.125 66%
Yes 5 SVM linear kernel C = 1 71%

No 49 SVM rbf kernel C = 128;
γ = 0.0005 67%

Yes 10 SVM rbf kernel C = 2;
γ = 0.00781 66%

Table 17: Confusion matrix using FFS and SVM with linear kernel in cases of females and males together.

true FD true OD class precision
pred. FD 61 27 69%
pred. OD 21 55 72%
class recall 74% 67%

for class OD. This classification accuracy value is more reliable, than if I had done the classification
on the dysphonic recordings from the database presented in Section 3.2.1, since it is unaffected by
the difference in severity of hoarseness between the two groups.

The results clearly indicate that the separation between the two diseases can be done.

Thesis III. A. [C3] I showed that the automatic separation between organic and functional
dysphonia based on acoustic features is possible with 71% accuracy using SVM with linear kernel
on the Hungarian Filtered Dysphonic Database.
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4.4 The automatic classification of the voices of children with dysphonia

The goal of this section is to make an attempt to automatically distinguish healthy voices of
children from ones with dysphonia with SVM. The acoustic parameters used in this experiment
are presented in Section 3.3.1.

For the binary classification an SVM classifier was used with linear and radial basis function
(rbf) kernel. First, all 103 features calculated were used as input, then the FFS algorithm was used to
reduce the dimensionality of the input vector. Usually in the case of rbf kernel the hyperparameter
C is set to the number of parameters, while γ is set to 1/number of parameters. Leave-one-out
cross validation was used in all cases. Classification results are summarized in Table 18.

Table 18: Two-class classification results on the Dysphonic and Healthy Child Speech Database.

FFS
Number

of
features

Classifier
and configuration

Hyper-
parameters

LOOCV
accuracy

No 103 SVM linear kernel C = 1 88%

No 103 SVM rbf kernel C = 124;
γ = 0.008 86%

Yes 8 SVM linear kernel C= 1 93%

Yes 8 SVM rbf kernel C = 10;
γ = 0.1 93%

Table 19: Confusion matrix using FFS and SVM with linear kernel.

true HC true Dys class precision
pred. HC 32 2 94%
pred. Dys 2 23 92%
class recall 94% 92%

As the table shows that the highest accuracy of 93% was reached using linear and rbf kernel.
The features selection algorithm reduced the input dimensionality to 8 acoustic features, while
achieving higher accuracy than the case when the starting features were used.

The confusion matrix can be seen in Table 19 when FFS and linear kernel was used. The class
precision of the Healthy class is 94% and 92% in case of Dysphonia. The recall for the HC class
was 94% and 92% for Dys.

A successful classification should have a symmetric confusion matrix if the weights of the
mismatch of the two classes are even. Otherwise, an asymmetric confusion matrix might indicate
a biased classifier. The confusion matrix presented with 93% accuracy is as symmetric as it gets.
However, as I mentioned earlier, confusion matrix is not symmetric in a medical system. Predicting
a healthy child as dysphonic is less bad than predicting a child with dysphonia as healthy.
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Furthermore, in my research it is essential that the number of true Dys cases misclassified as
HC should be minimized. This happens only twice, resulting in a high 92% recall of class Dys.

We can conclude that input vectors used have great power to distinguish healthy from dysphonic
voices of children. From this result, it seems that dysphonia can be better screened at an early
stage, but much more data need to be collected to make such statements.

Thesis IV. A. [J2] I showed that the automatic separation of the voices of healthy children
and children with dysphonia is possible by 93% classification accuracy using SVM with linear and
rbf kernel on the Dysphonic and Healthy Child Speech Database.
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5 Applicability of my results

The results demonstrate that developing a diagnosis support system which can differentiate
dysphonic speech from healthy one is practically feasible. It is important to note, that while the
system could be used for pre-screening, giving an exact diagnosis remains the responsibility of the
physician.

The system proposed for adults comprises several steps: the speech recordings of the patients are
arranged into speech databases (Dysphonic and Healthy Adult Speech Database). The recordings
are normalized and segmented on phone level. After selecting the phones to be analysed, acoustic
features are extracted and arranged into a feature vector. The feature vector is given to a classifier
to perform the binary classification (healthy or unhealthy) in possession of prior knowledge. If the
recording is classified as healthy the process stops. If it is classified as unhealthy this practical
diagnosis support system would recognize the type of dysphonia, namely: functional or organic
dysphonia, whilst performing the estimation of the severity of dysphonia based on a regression
module.

Prior knowledge is gained by the procession of a carefully built speech database and optimal
classification and regression models described in Sections 3.2.1, 4.1, 4.2, 4.3 and 4.4.

The class (healthy / unhealthy) or the severity of dysphonia is unknown for new speech samples.
The preprocessing of the speech record is the same and after the acoustic features are measured
on phone level a testing feature vector is constructed that enters a comparative unit, thus the
classifications or regression are performed. This process is summarized in Fig 7.

If functional dysphonia can be determined with high probability, with the help of a diagnosis
support system, the patient would be directed to a phoniatrist or speech therapist. If the system
detected organic dysphonia, the patient would be directed to an otolaryngologists or oncologist.
This would save a lot of time and would lead the patient to care as soon as possible. The end
system proposed in this study can help young physicians or general practitioners filter out patients
with dysphonia more efficiently and determine the severity of dysphonia automatically.

A diagnostic support system for the early recognition of dysphonia in the voices of children
would follow the same logic described above, with the difference that the separation of organic from
functional causes of dysphonia is not yet possible. Since the classification results in case of children’s
voice are promising, collecting further speech records to generalize the classification model on a
larger dataset is advised. In the long term it is worth developing a tool for the automatic detection
of dysphonic voices among children. Mobile devices are suitable for implementing this method and
using it in practice. Mobile health applications are usually designed for smart-phones or tablets, on
some occasions smart-watches. They allow users to access information when and where they need
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Figure 7: Proposed framework of a practical diagnosis support system for adults.

it; reducing the time wasted with searching for specific data. These devices are cheap, easy-to-use
and lightweight. Voice samples, metadata, acoustic feature values and the classifier output can be
collected and uploaded to a cloud server. In this way, we can monitor the quality of the children’s
voice over the long term. The goal is to build a screening system that can be used by pre-school
workers. If a child with dysphonic voice can be filtered in time, they will have a better chance of
getting a professional help from an ear, nose and throat (ENT) specialist or a speech therapist.
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